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1 Mathematical Fundamentals

Pre-requisite mathematical fundamentals used in this lecture.

1.1 Maximum Likelihood Estimation (MLE)

Given some data D that is drawn from a statistical model M , and parameterized by θ. The likelihood
function is defined as:

L(θ) = P (D|θ)

where P (D|θ) is the probability of observing the data under Mθ. This function measures how well the
statistical model with parameters θ explains observed data by calculating the probability of seeing that
data under different parameter values of the model.

The goal of maximum likelihood estimation is to find the values of the model parameters that max-
imize the likelihood function over the parameter space:

MLE: θ̂ = argmax
θ

L(θ)

If the data D = {xi}ni=1 has been drawn i.i.d., we can define

l(θ) = logL(θ) = logP (D|θ) = log πiP (xi|θ) =
∑
i

logP (xi|θ)
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This form is easier to work with while taking derivatives as we have a summation of logs instead of a
product. It is also easy to see that

θ̂ = argmax
θ

l(θ) = argmax
θ

L(θ)

because the log function is monotonically increasing.

MLE is used to estimate parameters of probabilistic models, employing techniques like gradient descent
for optimization.

1.2 KL Divergence

The Kullback–Leibler (KL) divergence (also called relative entropy) is a type of statistical distance: a
measure of how much a model probability distribution Q is different from a true probability distribution
P. Formally, for a distribution with finite support Y:

KL(P ||Q) =
∑
y∈Y

P (y) log
P (y)

Q(y)

Note:

• KL(P ||Q) > 0

• KL(P ||Q) = 0 ⇐⇒ P = Q

KL Divergence is NOT symmetric in P and Q.

Example:

If P = Bernoulli(p), Q = Bernoulli(q) :

KL(P ||Q) = p log
p

q
+ (1− p) log

1− p

1− q

2 Learning from Pairwise Comparisons

Before discussing the general problem of LLM alignment using pairwise comparisons, we will discuss a
more classical problem of learning from pairwise comparisons. Here, there are n possible alternatives
{y1, y2, ..., yn} and we have results of pairwise comparisons between these alternatives. In the ith pair,
the winner is yiw, and the loser is yil .

Notation: yw ≻ yl means that alternative yw is preferred to yl.

Let us denote our data as:
D = {(yiw, yil)}mi=1

In order to model the comparison data, we will use the probabilistic Bradley-Terry-Luce (BTL) model.
Under the BTL model, each alternative y is associated with a reward r∗y ∈ R. Let us denote

r∗ = (r∗1 , r
∗
2 , ..., r

∗
n) ∈ Rn

We assume that the data is drawn from the BTL model with rewards r∗. More precisely, the probability
of observing yw ≻ yl is given by

P (yw ≻ yl|r∗) =
er

∗
yw

er
∗
yw + er

∗
yl
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Given the data D our goal is to estimate r∗. An obvious approach for this is to perform maximum
likelihood estimation (MLE):

r̂ = argmax
r

∑
(yw,yl)∈D

logP (yw ≻ yl|r) s.t.

n∑
i=1

ri = 0

= argmax
r

∑
(yw,yl)∈D

log
eryw

eryw + eryl
s.t.

n∑
i=1

ri = 0

= argmax
r

∑
(yw,yl)∈D

log
1

1 + eryl−ryw
s.t.

n∑
i=1

ri = 0

Note that the condition
∑n

i=1 ri = 0 is imposed to ensure uniqueness as the model is invariant to shifts
in rewards. This expression has no closed-form maximization, so we perform gradient ascent to find r̂.

Note that this is possible as log 1

1+e
ryl

−ryw
, better known as the sigmoid function is convex in r.

Beyond MLE, spectral methods have also been proposed for learning the parameters of the BTL
model [Negahban et al., 2017]. One can also provide theoretical bounds on the size of the data needed
to achieve a certain accuracy for the BTL parameter estimation (beyond the scope of this course).

3 Primer on LLM Training

The following figure describes the different steps of the LLM training process. It highlights the impor-
tance of the alignment step which is required to ensure that the model is not toxic, abusive etc., and is
aligned with human values.

Start: Building LLMs

Step 1: Pre-train on large text corpora

Step 2: Supervised Fine-Tuning

Step 3: Alignment with human feedback

Final optimized LLM (aligned and reduced toxicity)

Pre-training:
Large-scale unsupervised learning
on large text corpus
for next-word prediction
Objective: Predict next words.

Supervised Fine-tuning (SFT):
Supervised learning using gold-standard
annotated prompts and responses for
domain or task-specific optimization.
Still has toxic and harmful data.

Alignment:
Optimize using pairwise crowdsourced
or human-annotated data to align
with human values and reduce biases.
Techniques: RLHF, DPO

4 Collecting Pairwise Feedback for LLM Alignment

As we discussed in the last lecture, a common way to utilize human experts is to ask for pairwise
comparisons between different alternatives. In the context of LLMs, this means asking for pairwise
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comparisons between different responses give a prompt. Given the dataset of such pairwise comparisons
over responses, the goal is to align the model so that it is more “agreeable” with human preferences.

In the following we will outline the process of collecting the pairwise preference dataset and then
performing alignment using the dataset. We first introduce an abstract definition of an LLM policy that
outputs responses given a prompt.

4.1 Defining the Policy π

The policy π is defined as a function that maps a given prompt x (x ∈ X ) to a probability distribution
over all possible responses in the response space Y. Formally,

π : X → ∆(Y),

where:

• All yi ∈ Y belong to the response space Y,

• All xi ∈ X belong to the prompt space X .

The policy π essentially provides a mechanism to generate responses for a given prompt x. Specifically,
for each prompt x ∈ X , the policy assigns a probability distribution π(· | x) ∈ ∆(Y) over all possible
responses in Y.
Note: The symbol · in the notation π(· | x) acts as a placeholder for any element in the response space
Y. It signifies that the policy assigns probabilities to all potential responses, conditioned on the given
prompt x.
Note: It is generally easy to sample from the probability distribution π(· | x) given the prompt x, but
it is not very easy to calculate the entire probability distribution.

4.2 Sampling Responses and Human Feedback

After completing Step 2 in the LLM training process, we acquire a policy denoted as πSFT, representing
the fine-tuned model.

We are give a set of m prompts {x1, · · ·xm} which could be either generated by another LLM or
extracted/hand-picked from past human interactions. For all prompts xi ∈ X , the responses yiw (winning
response) and yil (losing response) are sampled from the probability distribution πSFT(· | x) as follows:

yiw, y
i
l ∼ πSFT(· | x).

Once two responses have been generated using πSFT(· | x), humans are tasked with labeling the better
response in the pair. The final winner/loser can be decided by an aggregation of the votes of multiple
humans or a single expert depending on the design of the crowdsourcing platform. This feedback is then
used for further alignment and improvement of the policy.

4.3 Final Dataset

After the feedback collection step, we have a dataset D of the following form:

D = {(xi, yiw, y
i
l) | i = 1, . . . ,m},

where:
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• xi denotes the prompt,

• yiw is the winning response of the pairwise comparison, and

• yil is the losing response of the same comparison.

5 LLM Alignment Methods

Note: In this section we will denote the old policy as πref instead of πSFT to allow for a more general
exposition.

Given the dataset D and the reference policy πref our goal is to arrive at a policy π that improves
upon πref by incorporating human preferences.

πref → π

This process involves refining the policy so that it aligns better with human values and preferences. We
will study two techniques for achieving this alignment, RLHF and DPO.

5.1 Assumptions

The alignment methods that we will discuss rely on two key assumptions about how the pairwise pref-
erence data is generated. Recent work in this area has focused on how to remove these assumptions but
this is outside the scope of this lecture.

5.1.1 Existence of a Reward Function r∗

There exists a function r∗(x, y) that assigns a real-valued reward to each response y given input x:

r∗ : X × Y → R.

This reward function helps in ranking responses.

5.1.2 Bradley-Terry-Luce (BTL) Model

The probability of preferring y1 over y2, given x, follows:

P (y1 ≻ y2 | x; r∗) = er
∗(x,y1)

er∗(x,y1) + er∗(x,y2)
.

This is a logistic model for ranking responses. The reward function r∗ is usually represented using a
neural network whose parameters are learned.

5.2 Reinforcement Learning from Human Feedback (RLHF)

RLHF involves two steps:

• Step 1: Maximum Likelihood Estimation (MLE) to get the reward function r∗: We
first use MLE to estimate the reward function r∗ that measures the desirability of the response y
given a prompt x.

• Step 2: Use Reinforcement Learning to obtain the policy π: We use RL to align the policy
πref with human preferences.
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5.2.1 Maximum Likelihood Estimation (MLE)

We use Maximum Likelihood Estimation (MLE), similar to what we did in Section 2. Under the BTL
model with reward function r, the probability of the winning response yw being greater than the losing
response yl given the prompt x as:

P (yw ≻ yl | x; r) =
er(x,yw)

er(x,yw) + er(x,yl)
.

We then estimate the reward function r∗ by maximizing the likelihood of the product of these probabil-
ities over all data points:

r̂ = argmax
r

m∑
i=1

logP (yiw ≻ yil | xi; r) .

In practice, the reward model is parameterized by the weights θ of the neural network that is used to
represent the reward model, and these parameters are learned using the MLE.

5.2.2 RL: Updating πref using Policy Gradient Methods

Given a reward model r that is learned in the previous step, we define our objective as maximizing the
following:

J (πϕ) =

m∑
i=1

∑
y∈Y

πϕ(y | xi) · r(xi, y)

− βKL(πϕ(· | x) ||πref(· | x)),

π = argmax
ϕ

J (πϕ)

where:

• The first term represents the expected reward under the policy πϕ, where the policy assigns a
probability πϕ(y | xi) to response y and the reward r∗(xi, y) is given by the reward function.

• The second term is the Kullback-Leibler (KL) divergence between the new policy πϕ and the
reference policy πref. This term serves two important purposes:

– Reason 1: Preventing the policy from overfitting to the preferred response. The
first term of the objective function is linear, which means that to maximize the objective,
the new policy πϕ would likely assign a very high probability (close to 1) to the preferred
response and ignore all other responses. To prevent this, we introduce the KL divergence as
a regularizer. The KL term penalizes large deviations from πref, ensuring that the new policy
does not overfit the preferred responses and keeps a more balanced distribution.

– Reason 2: Preserving the learned reward model. The reward model r∗ was learned
based on the domain of πref, so we do not want the new policy πϕ to deviate too much from
the domain of πref, where the reward function is well-defined. If πϕ moves too far from πref,
the reward model might become arbitrary, and the learned rewards may no longer align with
the intended preferences. Thus, the KL divergence helps preserve the knowledge embedded in
πref and ensures that the policy stays within the domain where the reward model was valid.

• β is a hyperparameter that controls the trade-off between maximizing the expected reward (first
term) and minimizing the KL divergence (second term). This hyperparameter must be tuned based
on the dataset to find the optimal balance.
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To optimize the objective function J (πϕ), we perform gradient ascent. However, due to the complex
nature of the response space Y,1 we cannot simply apply standard gradient ascent techniques. This
necessitates the use of specific reinforcement learning (RL) techniques, such as policy gradient methods
(PPO), which allow us to efficiently compute gradients and update the policy despite the complex
structure of the response space.

5.3 Direct Preference Optimization (DPO)

Very recently, Rafailov et al. [2023] introduced DPO which aims to simplify the two-step procedure
of reward learning followed by policy update. DPO observes that the reward model has one-to-one
correspondence with the optimal policy, and it is possible to combine the two-steps of RLHF into a
single step.2

We now describe the DPO procedure. First, converting the objective to a minimization problem,

argmax
π

J(π) = argmin
π

m∑
i=1

(
−
∑
y∈Y

π(y|xi) · r(xi, y) + β KL
(
π(·|xi) ∥ πref(·|xi)

))
Summation over xi can be replaced by an expectation value over x over the observed dataset D, and
the constant factor N can be dropped. Similarly, for y, we can replace the summation over y ∈ Y by the
corresponding expectation value.

= min
π

Ex∼DEy∼π(·|x)

[
− r(x, y)

β
+ log

π(y|x)
πref(y|x)

]

Writing − r(x,y)
β as log e−

r(x,y)
β ,

= min
π

Ex∼DEy∼π(·|x)

[
log e−

r(x,y)
β + log

π(y|x)
πref(y|x)

]
And combining the terms into a single logarithm,

= min
πϕ

Ex∼DEy∼πϕ(·|x)

[
log

πϕ(y|x)
exp( r(x,y)β ) · πref(y|x)

]
We can write

π∗(y|x) = 1

Z(x)
exp

(r(x, y)
β

)
· πref(y|x)

Where Z(x) is the normalizing factor,

Z(x) =
∑
y

exp
(r(x, y)

β

)
· πref(y|x)

This gives us,

max
πϕ

J(π) = min
πϕ

Ex∼DEy∼πϕ(·|x)

[
log

πϕ(y|x)
π∗(y|x)

− logZ(x)

]
logZ(x) is constant with respect to πΦ, so it can be dropped, and replacing the logarithm with the KL
term, we get

= min
πϕ

Ex∼DKL
(
πϕ(·|x) ∥ π∗(·|x)

)
Therefore,

π∗ = argmin J(πϕ)
1Recall that LLMs are trained using next-token prediction, and the entire conditional π(· | x) is hard to calculate

explicitly.
2Note that DPO is theoretically equivalent to RLHF under the BTL model, but the implementation details differ.
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